Spectral and Temporal Factors Associated with Headlight Glare: Implications for Measurement

John D. Bullough, Ph.D.
Lighting Research Center, Rensselaer Polytechnic Institute

Council for Optical Radiation Measurements Conference
Troy, NY
June 10-11, 2008
Background

- Present characterization of vehicle headlight photometry is based on:
 - Photopic luminous efficiency function
 - Luminous intensity values at specific angular locations
In the past decade, vehicle headlights have evolved in a number of ways (NHTSA, 2007):

- New (often "bluer") and sometimes higher-output light sources
 - High-intensity discharge (HID, or xenon)
 - Coated-bulb halogen
 - Coming soon: light-emitting diode (LED)
- Increased mounting heights (e.g., SUVs)
- Decreased likelihood of proper aim
The trend with newer headlight sources is toward increased short-wavelength light output.
Spatial Distribution

- Because of improved luminous efficacy, HID headlamps have increased peripheral light output
Characterizing Headlight Glare

- **Disability glare**
 - Reduction in visibility caused by luminous veil due to scattered light in the eye
 - Well-understood quantitatively for decades (Fry, 1954)

- **Discomfort glare**
 - Annoying or painful sensation when exposed to a bright light in the field of view
 - Much less understood (Rea, 2000)
Characterizing Headlight Glare

- **Visual recovery**
 - Reduction in visibility caused by increased visual adaptation followed by several seconds of reduced visual sensitivity *after* exposure to a bright light
Disability Glare

- Reductions in visibility from oncoming headlights with different spectral power distributions depended only on the photopic illuminance at the eye (Bullough et al., 2003)
 - Conventional photometric characterization has utility in predicting disability glare
Discomfort Glare

- Mechanisms are not understood
- Methods to characterize discomfort glare physiologically have not been successful
 - Pupil size fluctuation
 - Electrophysiological measures
 - Squinting
- Psychology surely plays a role, too
The State of the Art in Discomfort Glare

- **Subjective ratings**
 - De Boer (1967) scale is common in automotive lighting research
 - Discomfort glare ratings are strongly correlated with illuminance at the eye
 - Background light level, location in field of view, and even what one is doing when rating the glare all influence the absolute level of discomfort (Bullough et al., 2002, 2003, in press; Theeuwes et al., 2002)
Discomfort Glare

- Headlights with greater short-wavelength light output produced greater discomfort (Bullough et al., 2002, 2003; Flannagan, 1999)
A Possible Mechanism?

- Imagine creating a luminous efficiency function from the short-wavelength (S) cone photoreceptor spectral sensitivity
 - Peak near 450 nm
Further Experiments

- Using narrowband filters and a xenon light source, discomfort glare from 5° off-axis was measured for several wavelengths and several illuminances at the eye (Dee, 2003)

Wavelength	Image...
450 nm	![Image](450 nm)
510 nm	![Image](510 nm)
590 nm	![Image](590 nm)
650 nm	![Image](650 nm)
700 nm	![Image](700 nm)
Modeling Spectral Sensitivity for Discomfort Glare

- A combination of $V_{10}(\lambda)$ (CIE, 2005) and short-wavelength cone sensitivity was the best rectifying variable for discomfort ratings.

- Follow-up study (Watkinson, 2005) confirmed these results.
Is Discomfort Glare Excess Brightness?

- If so, peripheral brightness data from Weale (1953) offer an interesting hypothesis for peripheral angles other than 5°
Role of Spatial Distribution

- Disability and discomfort glare are acute phenomena
- Different headlights provide different illuminance "profiles" to oncoming drivers
Characterizing Headlights for Visual Recovery

- **Dosage**: illuminance \times duration
- **Peak**: maximum illuminance

- To what extent do these parameters impact visual recovery?

![Graph showing two lines representing different types of light exposure](image-url)
Recovery Laboratory Study

Four illuminance/dosage conditions:

- 1 lux for 5 seconds (dosage = 5 lx·sec)
- 2 lux for 2.5 seconds (dosage = 5 lx·sec)
- 2 lux for 5 seconds (dosage = 10 lx·sec)
- 4 lux for 2.5 seconds (dosage = 10 lx·sec)

Time to detect a target presented immediately after exposure profile was measured (Chen, 2004)
Recovery Laboratory Study Results

- Recovery times were correlated with dosage
- Discomfort ratings were correlated with peak illuminance (Chen, 2004)
Implications for Headlight Measurement

- Conventional headlight photometry only partially characterizes their glare-related properties
 - Disability glare

![Graph showing wavelength vs. relative value](image-url)
Characterizing Discomfort Glare

- A function combining photopic (large-field) sensitivity and short-wavelength (S cone) sensitivity appears to rectify discomfort glare from different spectra (at 5°)
Characterizing Visual Recovery

- Integrated value of intensity over angles of interest might be a more suitable measure of potential for long recovery times following headlamp exposure
Acknowledgments

- **Spectral sensitivity studies**
 - Transportation Lighting Alliance
 - Automotive Lighting, DaimlerChrysler, GE Lighting, General Motors, Guide Corporation, Hella, Philips Lighting, OSRAM Sylvania

- **Visual recovery studies**
 - National Highway Traffic Safety Administration

- John Van Derlofske, Peping Dee, Jennifer Watkinson, Jie Chen